Friday, February 5, 2010

Does Tyrosine for ADHD Actually Work as a Supplementation Strategy? (part 3)

Can we treat ADHD symptoms via Tyrosine supplementation?

This is the 3rd post in our series of discussions regarding ADHD and supplementation with the amino acid tyrosine. Some physicians (and ADHD patients) swear by it, but the results in the literature and clinical studies are often muddled. Why is this the case?

Over the past few postings, I have been going over the metabolic pathway of how the body converts the amino acid tyrosine to our desired brain chemicals of dopamine and norepinephrine. Imbalances of both dopamine and norepinephrine are typically seen in ADHD, and this imbalance is the target of most ADHD medications (especially the stimulants) during their modes of action.

Here is the metabolic pathway on Tyrosine to Dopamine and Norephinephrine again (you can click on the image to get a larger view, or see the original image source here):

In our first post on ADHD and tyrosine supplementation, we went through the overview of this pathway. In our last posting, we went through the first step of the process: the conversion of tyrosine (also referred to as L-tyrosine) to DOPA (also referred to as L-DOPA, Levodopa and a number of trade names such as Dopar, Laradopar or Sinemet), and the enzymes and nutrient co-factors involved in this conversion process. L-DOPA is a common treatment method for patients with Parkinson's Disease.

I was going to start with the next step of the process today: the conversion of L-DOPA to dopamine, and the major enzymes involved. However, one of our readers from the previous posting on the conversion of Tyrosine to L-DOPA, posed an excellent question on a topic I failed to address (which may be on the minds of several readers). As a result, I will dedicate the remainder of this post to this question and save the next step of the tyrosine to dopamine pathway for the next blog entry.

LynneC asked about the advantages of supplementing with tyrosine vs. supplementing directly with L-DOPA. As we saw in the previous posting on tyrosine supplementation for ADHD, the tyrosine to dopamine conversion requires one major enzyme (tyrosine hydroxylase) and several secondary enzymes (to produce some of the compounds needed to help the tyrosine hydroxylase enzyme to function properly), as well as nutrient co-factors such as iron, zinc, magnesium, and even antioxidants or reducing agents such as vitamin C.

Further complicating the issue, we saw that individual variation across the gene pool leads to different forms of this tyrosine hydroxylase enzyme, some of which are notably more effective or "potent" than others. In other words, some people are more disposed to having an efficient metabolic conversion of tyrosine to L-DOPA than others.

If this is the case, why should we mess with tyrosine at all? Shouldn't we just bypass this first step of the process entirely and start with L-DOPA? Here are a few things to consider:

  1. Supplement Availability: L-Tyrosine is available over-the-counter. However (until relatively recently), L-DOPA required a prescription. This is not the case anymore, however, as L-DOPA supplements are available in countries like the United States (I believe that a prescription is still required in Canada, however, but I could be wrong).

    Blogger's note: Even though both of these agents are available without a prescription, this blogger believes is is EXTREMELY important for you to talk to your physician before giving either of these supplements a try.

    Both tyrosine and L-DOPA can undergo biochemical transformations via a number of different pathways (i.e. not just in the conversion to catecholamines in the brain such as dopamine and norepinephrine). Both can interact with other medications (especially certain classes of anti-depressants known as MAOI's or monoamine oxidase inhibitors), as well as with each other, and overdosing is possible. Additionally, individuals with certain forms of cancer (especially skin cancers) or eye disorders such as glaucoma are typically instructed to avoid both treatments entirely. PLEASE check with a physician before starting either of these as a therapy for ADHD or ANY other reason.


    ADVANTAGE with regards to ADHD treatment: Tyrosine


  2. Cost: I did a quick search on the costs of both supplements (keep in mind that brand names, strengths and quantities can cause extreme variation), and from what I've seen, L-DOPA often costs somewhere from about $65 to $150 US dollars for 100 tablets. Please note that L-DOPA typically comes in a combination form of Levodopa and another compound called Carbidopa (Carbidopa greatly aids in the absorption of Levodopa and helps minimize unwanted side-reactions of the Levodopa drug, so almost all standard formulas now exist in this Levodopa/Carbidopa tandem). For tyrosine, the cost is much lower, as I've seen ads online for a bottle of 100 capsules (500 mg strength, note that many individuals who supplement with tyrosine take doses around this level 3 times a day) for only $2 to $3 dollars a bottle. Clearly, the cost of taking L-tyrosine is much lower.

    ADVANTAGE for treating ADHD: Tyrosine


  3. Step in the conversion pathway: In the previous post, we saw how certain enzymes (tyrosine hydroxylase) and nutrient "co-factors" (co-factors essentially function as "helpers" to the enzyme, making it function more effectively. If these co-factors are missing or deficient, the enzyme is often compromised, and the metabolic conversion process is reduced. In this blogger's opinion, co-factor shortages are one of the most overlooked reasons why natural, dietary or supplementation strategies for ADHD treatment often fail), such as iron, zinc, magnesium, and vitamin C are needed, either directly or indirectly to aid the process.

    ADVANTAGE for ADHD treatment: L-DOPA*
    * Starting directly with L-DOPA bypasses these factors or complications (but poses its own set of challenges, as we'll see later in this post, more about this in a minute).


  4. Transportability across the blood-brain barrier: We talked at length about the blood-brain barrier in the past two posts, but to recap: The blood-brain barrier is a biochemical barrier designed to keep potentially hazardous or toxic compounds (that accidentally get into the blood) from getting into the brain (where these substances are often much more devastating). It also acts like a sort of "filtering" system, controlling or regulating the transport of "good" compounds in the brain, reducing the risk of imbalances from these chemicals.

    Unfortunately (especially for drug manufacturers), this barrier also blocks out many potential therapeutic agents, so drugs targeting specific brain regions must be chemically designed to pass through this blood-brain barrier to be effective. It is worth noting that both tyrosine and L-DOPA can cross through this barrier, so both are acceptable methods of delivery to increase or balance out dopamine and norepinephrine levels in the brain.

    On a side note (and mentioned in our previous discussions on the matter), dopamine and norepinephrine typically are NOT able to pass through the blood brain barrier, meaning that these compounds need to be manufactured inside of the brain. This is why we cannot supplement with either of these agents directly.

    ADVANTAGE for ADHD: A draw. Both Tyrosine and Levodopa can cross the blood-brain barrier**

    **
    We will see in the next few points, how this "tie" between the two may not be entirely true.

  5. "Target" specificity: Here is where the real difference lies. In the past few posts, we have been vague with regards to the specific brain regions in which chemical imbalances of dopamine and norepinephrine are found in the ADHD brain. It is important to note, that these deficiencies/imbalances are not uniform throughout the body (or even the brain) in the ADHD individual.

    Certain brain regions are frequently identified as target sites of chemical imbalances (which typically exist as deficits, not excesses) of the neurotransmitters dopamine and norepinephrine. By no means is this list extensive, but two brain regions which are commonly associated with shortages of these signaling chemicals are the striatum and the prefrontal cortex (as an interesting aside, these 2 brain regions have been found to be proportionally smaller in ADHD individuals according to some studies and bloodflow patterns to the prefrontal cortex have been found to be different in the ADHD brain vs. the brains of patients with other disorders such as Obsessive Compulsive disorders).
    Shown above is a picture of an individual's brain. We are looking from the top down on a patient facing forward (the front is towards the top of the page). Several key "ADHD brain regions" are highlighted. The rough location of the prefrontal cortex, shown in brown, is a major region of importance where ADHD treatment is of concern. The green, red and blue regions represent approximate locations of sub-components of a brain region collectively called the corpus striatum. Both the prefrontal cortex and the corpus striatum regions of the brain are thought to be common sites of imbalance of the brain chemicals dopamine and and norepinephrine.

    Getting back to our main point here, however, is the fact that supplementation with tyrosine typically reaches its targets with much more specificity than does L-DOPA. In other words, if target region specificity is what we're after, then supplementation with tyrosine shows a slightly better track record, at least according to the literature reviewed by this blogger. Keep in mind, however, that this assertion hinges on only a few older studies, and the findings are far from definite.

    SLIGHT ADVANTAGE for treating ADHD: Tyrosine


  6. Fewer negative side effects: This ties in with the previous point, to a certain extent. L-DOPA, is, and continues to be, a treatment for Parkinson's, and not designed specifically for ADHD. However, in addition to being a chemical precursor to dopamine and norepinephrine, L-DOPA can also be converted to the agent melanin (which is responsible for skin pigmentation, among other things). The problem with this, however, is the fact that this conversion process can sometimes go overboard, and result in rapid generation and buildup of this (and related) compounds, increasing the risk of melanoma and related skin cancers.

    The actual magnitude of this L-DOPA/skin cancer association, however, is often questionable. While higher rates of skin cancer are seen in Parkinson's patients treated with L-DOPA, this finding is often negated by the fact that the cancer was present before the start of the L-DOPA treatment. Furthermore, general medical recommendations are often to refrain from L-DOPA or tyrosine supplementation in Parkinson's patients who are in various stages of these cancers. In other words, tyrosine may not be much better in this regard.

    Both tyrosine and L-DOPA have limitations, and potentially negative interactions. This includes kidney and liver dysfunctions, cases of depression where specific anti-depressants called MAOI's (short for monoamine oxidase inhibitors) are taken (both tyrosine and L-DOPA can negatively interact with MAOI function).

    Possible buildup of the compound homocysteine (a pro-inflammatory agent which has been implicated in everything from heart disease and cardiovascular disorders to depressive symptoms to cancer) can also be linked to tyrosine and L-DOPA intake, because both can serve as chemical precursors to this potentially dangerous compound. We will see how homocysteine ties in to all of this within the next few posts (as we work our way down the tyrosine to dopamine and norepinephrine pathway), and how its buildup can be reduced by taking in adequate levels of certain B vitamins and other nutrients. More on this later.

    In the meantime, please realize that there are hundreds of different ways tyrosine and L-DOPA levels can affect the body, so trying to classify one as "safer" is not necessarily so cut-and-dry. However, in this blogger's opinion, tyrosine, since it is a naturally occurring dietary food-source, has the advantage of over L-DOPA in that it is one step closer to "nature". Tyrosine is typically less potent than L-DOPA, so a higher dosage of tyrosine is typically required to get the same effects (in other words, we shouldn't be comparing, say a 500 mg dose of tyrosine with a 500 mg dose of L-DOPA, the effects of L-DOPA at this dose would be much more pronounced).

    Furthermore, as we have seen in the last post on tyrosine and ADHD, the enzyme-mediated conversion of tyrosine to L-DOPA is actually limited or shut off by the generation of the catecholamine "end-products" dopamine and norepinephrine. When high levels of these compounds are generated under normal conditions, these catecholamine compounds actually bind to and inhibit the enzyme tyrosine hydroxylase (which converts tyrosine to L-DOPA), thereby limiting further tyrosine to dopamine conversion.

    In other words, it appears that tyrosine has slightly better designed "control-switches" to keep its end products in check than does L-DOPA. We may be splitting hairs here (since both tyrosine and L-DOPA are natural metabolites of the body, both can be quite safe if the correct levels are taken and none of the pre-existing conditions exist or competing medications are being used), but according to all of the information this blogger currently has, tyrosine supplementation for ADHD treatment seems to be the safer bet here.

    ADVANTAGE: Tyrosine (just make sure to consult with a physician before trying this supplement, even though it is readily available over-the-counter).


  7. Overall effectiveness and potency: While both L-Dopa and tyrosine have often been prescribed for ADHD as more natural or "gentler" alternatives to pharmaceuticals, and "success" stories abound on individual cases, the overall literature tends to be less praise-worthy. From the studies this blogger has seen most of them show a temporary boost in effectiveness, but the positive results are often short-lived. Tolerance generally seems to be an issue, as in the case of a small study on direct tyrosine treatment for ADHD. In this study, the effectiveness of tyrosine wore off after 2 weeks. A similar study was done with L-DOPA (levodopa) on ADHD boys, and the results were similar. Initially, there was a positive response, but these results were also short lived.

    Curiously, most of these studies involving direct tyrosine or L-Dopa dependent treatment of ADHD are relatively old ones, most of which took place in the early 1980's (many were done by the same research group). There currently does not seem to be a whole lot of new material on this topic (at least to the best of this blogger's current knowledge).

    Furthermore, neither of these studies co-supplemented with the aforementioned nutrient "cofactors" to help with the metabolism and conversion to dopamine or norepinephrine. There is no telling what the status of magnesium, zinc, iron, or antioxidant levels (all of which can have an effect on tyrosine metabolism, as we've seen in the previous post on tyrosine supplementation for ADHD).

    Additionally, another nutrient called pyridoxal phosphate also plays a role in the next step of the chemical conversion process of L-DOPA to dopamine (pyridoxal phosphate is a derivative of vitamin B6 which is used to help the enzyme dopa decarboxylase to function properly. We will be investigating this nutrient/enzyme pairing in the next post, when we look at the next step of the dopamine conversion process).
    Levels of this key ingredient (at least in this blogger's opinion) need to be factored in when we evaluate the true merits of tyrosine or L-DOPA treatment for ADHD and related disorders.

    ADVANTAGE as an ADHD treatment method: Too close to call. In addition to their individual usage, tyrosine/L-DOPA/carbidopa (we will discuss why this carbidopa compound is often used alongside L-DOPA in the next section) can be used together to boost each others' effectiveness. Anecdotal reports laud the effectiveness of tyrosine/L-DOPA/carbidopa in combination as an effective ADHD treatment, but again, detailed clinical trials specifically designating ADHD are relatively scarce. In other words, although the literature findings on the subject seem to be scarce and somewhat discouraging, additional factors (such as the extra nutrients and enzyme co-factors which we are currently laying out) could possibly lead to more effective studies with more promising results on the topic of ADHD treatment via tyrosine and/or L-DOPA supplementation.

Thursday, January 28, 2010

Does Tyrosine Supplementation Actually Work for ADHD? (part 2)

Can ADHD symptoms be alleviated by supplementing with the amino acid tyrosine?

This post is a continuation from our introductory one on the effectiveness of tyrosine as an ADHD supplementation strategy.

(Blogger's note: if you do not have the time or the patience to wade through all of this information, I have provided a 7-point summary at the bottom of the page, which goes over the major points of this blog posting. If you do have the time, however, there is a lot of material and valuable research in the posting below surrounding the complex metabolic processes surrounding just one step of the tyrosine supplementation pathway for ADHD treatment).

The theory behind using the amino acid tyrosine to treat ADHD symptoms stems from the fact that tyrosine is a chemical precursor to important neurotransmitters (chemical signaling agents in the nervous system) dopamine and norepinephrine. Dopamine and norephinephrine belong to a class of signaling agents called catecholamines. Numerous studies have shown that imbalances of both of these catecholamine agents exist in most ADHD cases, and the imbalances are often on the low end (i.e. lower levels of dopamine and norepinephrine are found in several critical regions of an ADHD brain when compared to a "normal" brain).

Of course, this is a vast oversimplification of the whole process (which is much more complex), but the basic idea is that we "feed" the brain with higher levels of tyrosine and it is then able to create more of these two neurotransmitters. This idea, of giving the body higher amounts of starting material to use to convert into higher levels of the specific chemicals we want to produce is often referred to as precursor loading.

Unfortunately, as we might imagine, the process of correcting these chemical shortages an imbalances (and solving all of our ADHD problems in the process) is much more complex than popping a few tyrosine supplements. Shown below is a diagram of most of the major chemical "steps" needed to go from tyrosine (written as "L-tyrosine" below) to the catecholamines dopamine and norepinephrine A larger version of the diagram can be found by clicking the figure (in most browsers, or at the original source of the diagram, which can be found here).
We might be asking ourselves the question: Why can't we just supplement with dopamine or norepinephrine catecholamines directly to combat these ADHD-related shortages? The answer has to do with a biochemical entity known as the blood brain barrier.

The blood brain barrier is a special biochemical barrier used to control the transport of nutrients in and out of the brain. It is largely a protective measure, meant to keep toxic chemicals, which may have worked their way into the blood, out of the highly susceptible brain region. However, this blood brain barrier can also keep out some of our desired drug targets or chemical agents, including dopamine. Thus, while tyrosine (or as we'll also see in a later post, L-DOPA) can cross this barrier, dopamine cannot. As a result, we need to start with either tyrosine or L-DOPA on the outside of the blood brain barrier, shuttle these agents into the brain, and then have the brain convert them to the desired compounds.

In today's post, we will be examining the first step of the process in more detail, the conversion of tyrosine (L-tyrosine in the diagram) to L-DOPA:In order for this process to occur efficiently, we need three major components:
  1. An ample supply of tyrosine (or L-tyrosine) listed above
  2. A functional amount of the enzyme tyrosine hydroxylase
  3. Sufficient levels of a compound called Tetrahydrobiopterin.
Here's a more in-depth analysis of each of these three factors:

OPTIMIZING FACTOR #1: AN AMPLE SUPPLY OF TYROSINE:

How much tyrosine is necessary to do the job?

Unfortunately, the conversion from tyrosine to L-DOPA is not a particularly efficient process. As a result, higher levels of starting material (tyrosine) are needed. Just to give a very rough overview on the amount of tyrosine we're dealing with here in the context of ADHD treatment, typical daily supplemental doses often fall around 500 to 1500 mg per day, although there is often room for higher doses before toxicity risks set in.

At around 10-12 grams (roughly 10 times this amount), the risk of toxicity often goes way up. Other complications include high blood pressure or skin cancer (the reasons which we'll discuss in later posts), or the use of antidepressant medications, in which recommended tyrosine supplemental levels should be significantly lower (or avoided altogether).

**While tyrosine supplements can be purchased over the counter, PLEASE consult with a physician before doing any type of supplementation. In addition to the ones listed above, there are several other confounding factors which need to be taken into consideration with regards to dosing.



OPTIMIZING FACTOR #2: ADEQUATE FUNCTION OF THE ENZYME TYROSINE HYDROXYLASE


Kinetic studies (studies which measure the speed or rate of chemical reactions) have shown that this first step, L-tyrosine to L-DOPA is the rate limiting step in the tyrosine to dopamine/norepinephrine process. In other words, the "bottleneck" in this conversion process lies within the enzymatic conversion of tyrosine to L-DOPA and involves the tyrosine hydroxylase enzyme.

In addition to the fact that this enzymatic step is the slowest step in the tyrosine to dopamine conversion pathway, the tyrosine hydroxylase enzyme has some additional challenges to overcome. One of these is inhibition by its product, L-DOPA. What does this mean?

Most enzymes or enzyme systems often have some sort of "brakes" or "control switches" too keep them from running non-stop at full speed. In other words, when the body senses that enough of the desired product is attained, it will signal for these enzymes (or other regulatory systems) to either slow down or stop, to keep things balanced and in check (think of what would happen if these feedback systems weren't in place for, say, regulating appetite and feeling full, or getting an adrenaline rush that did not subside when the perceived "threat" was over).

Tyrosine hydroxylase is one such enzyme, meaning that when large amounts of dopamine or norepinephrine are eventually produced from tyrosine, the body actually begins to shut down this enzyme-regulated conversion process. Numerous studies have shown this, as tyrosine hydroxylase is inhibited by catecholamines.

In addition, other enzymes also work on tyrosine hydroxylase and help turn it "on" or "off". As a result, bombarding the system with high amounts of tyrosine will not generate equally high levels of neurotransmitters, because this feedback system is in place (and we haven't even mentioned some of the potentially harmful effects of doing this, which will be discussed in later posts).

***Blogger's note: It is not my intention as a blogger to try to dazzle or confuse anyone by using all of this technical and scientific jargon. Rather, I simply want to share how much is really going on behind the scenes when we play with the levels of just one type of supplement, like tyrosine. Having said this, I personally feel that a lot of false hope is created by advocates of supplement treatment for ADHD, as these proponents often over-simply these complexities and exaggerate the overall efficacy of these "natural" ADHD treatments. I personally would like to see more non-medication treatments tried out for ADHD management, but it is a disservice to anyone if these non-drug treatment options for ADHD aren't addressed with a similar level of scrutiny.

Getting back to the topic at hand...

Further clouding the tyrosine hydroxylase enzyme issue is the fact that there are several different forms of this enzyme which exist across the population. The enzyme tyrosine hydroxylase is actually coded for by a gene on the 11th human chromosome, which goes by the same name, the tyrosine hydroxylase gene.

It is important to note that slightly different versions of this gene among the human population actually result in slightly different versions of the tyrosine hydroxylase enzyme.
A growing body of evidence suggests that individuals with certain genetic variations of this tyrosine hydroxylase enzyme are more prone to certain psychiatric disorders. While it appears that ADHD is not as strongly connected to this gene and enzyme as other disorders (such as schizophrenia or Parkinson's), it is important to note that ADHD does share some degree of biochemical overlap with some of the disorders mentioned.

It is important to note that this tyrosine hydroxylase enzyme does not act in isolation. As mentioned in the previous post, many enzymes require special "helping" agents called co-factors, which are needed to help stabilize the enzyme or system of enzymes and influence their chemical functionality.

Many vitamins and minerals serve as co-factors for various enzymes. In the case of tyrosine hydroxylase, a major necessary nutrient co-factor is iron. As we will see later, iron has all sorts of implications with regards to the dopamine synthesis pathway. This has effects on both ADHD, as well as common comorbid (co-occurring) disorders to ADHD, including sleep disorders such as Restless Legs Syndrome. In other words, it is imperative that adequate dietary intake of iron in necessary to provide the body with enough of this vital nutrient to allow enzymes such as tyrosine hydroxylase function properly.

The tyrosine hydroxylase enzyme is bound to iron. You may remember from high school or college chemistry classes that iron typically exists in two major form, the ferrous form (a "+2" positive charge) or a ferric form (a "+3" positive charge). It turns out that these two forms of iron actually exhibit major effects on the function of this tyrosine hydroxylase enzyme.

Blogger's note: The following explanation will contain a fair amount of chemistry jargon. If you have any sort of science background, you might find it interesting, if not, please skim the next few paragraphs, and we'll meet up at the bottom where I summarize these findings and applications of this info:

As mentioned above, ferrous iron is the less positively charged (or, in chemical terms, less "oxidized") form of iron, while ferric is the more positively charged or more oxidized version of iron. Both of these forms can be embedded in the tyrosine hydroxylase enzyme. It turns out, however, that it is the less-oxidized ferrous form of the iron (+2) that is required for the enzyme to convert tyrosine to L-DOPA.

On the flipside, the more oxidized ferric form of the iron (+3 charge) is actually the form of the enzyme which plays a major role in shutting down the enzyme's production by catecholamines, as in the process of feedback inhibition mentioned above.

Overgeneralizing and oversimplifying a bit here, it is advantageous for our system to keep this iron in the tyrosine hydroxylase state at the less-oxidized ferrous form if we want to keep the enzyme running (again, this is a gross oversimplification, but the general idea holds).

If you've been reading this blog for awhile, you may have come across a post a few weeks ago entitled 10 Ways Vitamin C helps treat ADHD symptoms. In this posting, we discussed some of the interactions between vitamin C and iron, and how the vitamin can not only aid in the absorption of iron (thus helping to boost iron levels necessary for proper enzyme function) but also to act as an antioxidant on the iron.

Branching off of this idea, maintaining the necessary antioxidant pools via vitamin C or other antioxidants (which will be discussed shortly), we can help keep the iron in the tyrosine hydroxylase enzyme in the reduced ferrous state and aid in the tyrosine to dopamine conversion pathway. Some earlier mammalian studies have found that activity of the tyrosine hydroxylase enzyme is compromised in a state of severe vitamin C deficiency (scurvy), with the probable culprit being the inability to maintain the reduced (+2) ferrous state. In other words, vitamin C can influence ferrous iron levels, which then influences the tyrosine hydroxylase enzyme.


OPTIMIZING FACTOR #3: THE NEED FOR TETRAHYDROBIOPTERIN (and cofactors necessary for the regeneration of this tetrahydrobiopterin)


We have seen that vitamin C can help stabilize the tyrosine hydroxylase enzyme. However, the main factor in regular tyrosine to dopamine conversion stems from a compound known as tetrahydrobiopterin, which is often abbreviated as BH4. Tetrahydrobiopterin (along with molecular oxygen) is a major cofactor of the tyrosine hydroxylase enzyme, and responsible for the addition of the hydroxyl (-OH) group to the tyrosine molecule to produce L-DOPA.

This compound is manufactured in the human body, so (except in the case of rare genetic or metabolic disorders) supplementation with tetrahydrobiopterin or its chemical precursors is not necessary. However, its synthesis (from its own series of enzymes) is dependent on adequate levels of nutrient cofactors including magnesium and zinc. Prolonged deficiencies in either or both of these minerals can therefore potentially inhibit the synthesis of tetrahydrobiopterin, and, indirectly, the tyrosine to dopamine conversion process. Please note that we have discussed both magnesium and zinc in great detail with regards to the roles they play in the onset and treatment of ADHD.

In addition to the indirect relationship between tetrahydrobiopterin and ADHD due to the impact on dopamine synthesis, tetrahydrobiopterin is important in numerous other functions as well. For example, low levels of tetrahydrobiopterin in the body have been associated with hypertension and other types of cardiovascular dysfunction.

If tetrahydrobiopterin (BH4) is the predominant compound for the tyrosine hydroxylase enzyme function, is vitamin C still potentially useful in the process?

While BH4 is a more powerful regulator of the tyrosine hydroxylase enzyme in the tyrosine to L-DOPA ADHD treatment pathway, there is some evidence that vitamin C can "help the helper". A much older study, done way back in the 1970's suggests the benefits of vitamin C on the synthesis of catecholamines like dopamine and norepinephrine. The reason given in this article is the role of vitamin C in recycling or regenerating functional forms of the tetrahydrobiopterin compound.

The whole concept of vitamin C recycling other nutrients is not new to this blog and its discussions. We have mentioned how vitamin C can "recycle" other antioxidants such as vitamin E, and how this can have an indirect impact on nutritional treatment strategies for ADHD.

To summarize the key points and suggestions which should be taken away from this the blog post:

  1. Do not overdose on Tyrosine supplementation. For reference, a ballpark estimate on dosing is often somewhere around 500 to 1500 mg per day, but please do not start any type of supplementation without consulting with a physician.

  2. Tyrosine hydroxylase is the key enzyme in the conversion of tyrosine to L-DOPA. It is contains iron which must be kept in the reduced (+2) state to function properly. Naturally, this means that the enzyme can be compromised if an iron deficiency is present. Recommended daily intake levels for iron can be found here.

  3. It is believed that this tyrosine hydroxylase enzyme can be aided by maintaining ample levels of antioxidants such as vitamin C in the diet. Keeping antioxidant levels up to speed aids in maintaining this necessary form of the iron for the enzyme to function properly. In other words, the enzyme is intricately connected to antioxidant balances in the body. This is an often overlooked side-component of ADHD treatment via tyrosine supplementation. here is a link for the recommended daily intake for vitamin C.

  4. Tyrosine hydroxylase is inhibited by its own products, the catecholamines (which include dopamine and norepinephrine, two of our later "targets" in the above diagrammed pathways). This means that we cannot expect to get high levels of dopamine in the brain by mega-supplementing with tyrosine, because this process shuts itself off.

  5. Therefore, excessive tyrosine supplementation (beyond the level recommended by your physician) is essentially ineffective, and potentially harmful.

  6. The main helper of the tyrosine hydroxylase enzyme, however, is the compound tetrahyrobiopterin. This is manufactured in the body, so supplementation for this is not necessary (except in the case of a few rarel genetic or metabolic disorders). Tetrahydrobiopterin and molecular oxygen (O2) supply the enzyme with the proper tools to convert the tyrosine to L-DOPA by chemically adding a hydroxyl (-OH) group, which can be seen in the diagrams near the top of the post.

  7. Tetrahydrobiopterin synthesis is dependent on nutrient cofactors including zinc and magnesium. Recommended daily amounts can be found here for zinc and here for magnesium.
In our next post, we will be looking at the second major step of the conversion process from the tyrosine to dopamine pathway. This will rely heavily on enzymes known as decarboxylases. We will be looking at how these enzymes work, what nutrients (or co-factors) they need, and examine to see if there are any interfering factors or side-effects involved, as a way to optimize this process of tyrosine supplementation as an ADHD treatment strategy.

Friday, January 15, 2010

Does Tyrosine Supplementation Actually Work for ADHD? (part 1: theory and background)

Can ADHD Symptoms be Cured or Treated via Tyrosine Supplementation?

Due to the extensive nature of this topic, we will be investigating the answer to this question over a number of consecutive blog posts. First, some background on tyrosine, and why it is often a suggested (and even prescribed) on a relatively frequent basis by clinicians for treatment of ADHD and related disorders:

The appeal of a natural ADHD treatm
ent strategy such as supplementation with tyrosine or other amino acids in lieu of drugs:

As a parent, teacher or guardian of an ADHD child (or possibly as ADHD sufferers ourselves), we often have an inherent bias against medications for the attention deficit hyperactivity disorders. This is quite understandable. After all, who really wants to "drug" themselves or their child, especially if a more "natural" benign treatment method is currently available? While many of the claims against ADHD medications are either fabricated (as an example, while many "natural" ADHD treatment websites often love to assert otherwise, Ritalin is not the equivalent to crack cocaine) or over-hyped, there are definitely legitimate concerns and risks surrounding medication treatments for the disorder. Potential complications include:
The list goes on, but we get the idea.


THE THEORY BEHIND TYROSINE SUPPLEMENTATION FOR TREATING ADHD:


1. There is an imbalance of brain chemicals dopamine and norepinephrine in the ADHD brain:

One of the basic premises of ADHD is that it is caused by a chemical imbalance of certain neurotransmitters in the brain, including dopamine and norepinephrine. While the following description is a gross over-simplification of the process involved, the current theory is that the balance of the brain chemical dopamine inside vs. outside of brain cells is out of whack in certain key "ADHD" brain regions.

(As a side note, here is a link to some of main brain regions believed to be "different" between the ADHD and non-ADHD population, as well as another earlier post on the difference between an ADHD brain and an OCD (obsessive compulsive disorder) brain. Additionally, variations among individuals involving specific "ADHD genes" may play a role in dopamine level differences. Please take each post with a grain of salt, as they are more generalizations and examples than non-negotiable absolutes).

Again, this is a great oversimplification of a complicated process, but the general idea is that most ADHD medications (the stimulants in particular) work by either directly or indirectly increasing the levels of dopamine outside of the neuronal cells in the brain and restoring this imbalance. Please note, however, that this generalized "dopamine deficiency" theory of ADHD is by no means a consensus among the medical profession and is being challenged by some professionals.

2. Direct dietary supplementation with dopamine for ADHD treatment is ineffective:

Our first thought might be to just try to supplement the body with large amounts of dopamine to try to correct this neuro-chemical imbalance. The problem with this strategy is that we have to deal with an entity known as the Blood Brain Barrier.

In a nutshell, the Blood Brain Barrier is a barrier meant to prevent potentially harmful agents in the blood from making their way into the brain. In other words, it is a crucial protective measure which is vital to the survival of our bodies and respective nervous systems from the rapid influx of potentially harmful agents. The problem is that this barrier also screens out a number of potentially helpful agents, including many types of therapeutic drugs (this is one of the biggest challenges in the design of psychiatric medications, in addition to acting on their targets, these drugs must be able to actually get into the brain in the first place).

Unfortunately, it has long been known that the chemical dopamine itself does not have a particularly sound affinity for the blood brain barrier (although a number of "tricks" involving manipulation of protein "transporters" in and around the brain, as well as using slightly modified related compounds have been used to increase levels of this important neurochemical). As a result, direct unaided dopamine supplementation for ADHD does not work. Enter the amino acid tyrosine.

3. The amino acid tyrosine is a chemical precursor to both dopamine and norepinephrine.

Unlike dopamine, the amino acid tyrosine can cross the blood brain barrier (under the right conditions). The following diagram highlights the general pathway (including chemical intermediates) from tyrosine (listed as "L-tyrosine" in the diagram) all the way to dopamine, norepinephrine, and even epinephrine (adrenaline):
(Please note, the diagram depicted above is a reproduction of a larger image originally found here. The blogger apologizes for the low quality of the image depicted here; feel free to check out the larger image in the link above if needed.)

The attempt to generate higher levels of dopamine and norepinephrine by supplying the body with the dopamine and norepinephrine precursor tyrosine is an example of what is known in medicine as precursor loading. As we will see later on, precursor loading strategies are often a mixed bag of rewards and risks, with varying degrees of overall effectiveness. This blogger intentionally wishes to remain neutral on the subject at hand here, with the goal in mind of providing unbiased information advocating both for and against tyrosine treatment for ADHD.

You do not need to be a biochemist or know chemical structures or pathways; the above picture is just simply a visual tool to demonstrate that there are a number of steps in the conversion process of tyrosine to dopamine and norepinephrine. Using the above diagram for reference, we will see that there are a number of "hoops" we need to jump through in order to make tyrosine supplementation worthwhile as a possible ADHD treatment. We will break this down into smaller steps in the next collection of posts and summarize the overall potential (as well as review what the current literature has to say on this process) at the very end.

I have broken down some of the major steps of this process, which need to be considered to maximize the effectiveness of this tyrosine treatment for ADHD. Each of these steps will be addressed in the next few posts:

  1. The supplement must be able to cross the blood brain barrier. This process involves special "transporters", and can be influenced by outside factors, including other dietary amino acids. This will be discussed in the next post.

  2. In order to proceed on to dopamine, tyrosine must first be converted into an intermediate called L-dopa (please note that L-dopa can cross the blood brain barrier as well, and is sometimes used as a prescribed supplement for ADHD treatment in its own right. This will be discussed later on, including advantages or disadvantages of supplementing with L-dopa vs. supplementing with tyrosine).

  3. In order to convert to L-dopa, tyrosine requires the enzyme Tyrosine Hydroxylase, as well as cofactors ("helpers" to the enzyme), which will be discussed in detail in a later section.

  4. In order to convert from L-dopa to dopamine, a class of enzymes known as decarboxylases is needed. This too, requires cofactors (which in this case are specific vitamin and mineral derivatives) to operate properly. It is important to note that deficiencies in these nutrients can severely inhibit this step of the process (and, in the blogger's opinion, can be a seriously overlooked reason for the relative ineffectiveness of tyrosine supplementation in a number of cases, and that simply maintaining adequate levels of these nutrients could greatly aid the process in this crucial step). Again, these challenges will be discussed at a later time.

  5. Norepinephrine imbalances are also seen in many ADHD cases, so the dopamine to norepineprhine conversion process is also important. This, too, requires specific enzymes and cofactors.

  6. It is also critical that we don't overlook side reactions in the process. As we might expect, tyrosine can convert to a number of other things in the body besides dopamine, and the enzymes and systems involved in these pathways often "compete" with one another, each with its own accompanying side effects. These competing processes can cause potential problems, including the depletion of several crucial vitamins and minerals (the B vitamins in particular) and may also cause a buildup of potentially harmful biochemical products (such as homocysteine). Perhaps not surprisingly, some of these key vitamins and minerals used up by the above metabolic processes are often found to be deficient in the general ADHD population.

    We have investigated some of these B vitamin and homocysteine effects with respect to ADHD in an earlier post. The point here is this: if we flood our system with tyrosine, we must realize that we are feeding the first step of a whole slew of biochemical products in addition to our desired end products of dopamine and norepinephrine. We must account for these effects and do everything possible nutritionally to minimize the potential harm of chemical imbalances caused by these processes.
Of course there are other factors besides these six, but hopefully, we can start to see that supplementation with this amino acid in hopes of treating ADHD (or at least reducing symptoms of the disorder) has numerous complications, as well as potential drawbacks and limitations. However, this blogger feels that if we are to have a go with tyrosine supplementation, all the other pieces of this metabolic puzzle (nutrients, enzyme systems and otherwise) must be firmly in place to maximize the effectiveness of this ADHD treatment strategy. While this is certainly a tall order, it is my aim as a blogger to both highlight these necessary puzzle pieces and give potential ways to optimize their effectiveness in the next few posts.

Monday, December 28, 2009

10 Ways Vitamin C helps treat ADHD Symptoms

How Vitamin C can be an Effective Treatment Method for ADHD

We have previously discussed nutritional treatment methods for ADHD, including other "10 Ways" posts for carnitine and zinc. However, vitamin C, while often associated as being more of an immune-boosting and heart healthy antioxidant vitamin, may also play a crucial (and often underrated) role in taming the negative symptoms associated with Attention Deficit Hyperactivity Disorder, or ADHD.

Before we go any further, I must establish the appropriate context as to how we should interpret this blog post. Some of the following information on vitamin C surrounds more of the potential ways in which the vitamin can interact with the causative mechanisms of ADHD, and is more speculative than that of evidence-based controlled clinical trials. Other abilities or utilizations of the vitamin (such as vitamin C's ability to boost iron absorption, or the vitamin C-dependence of various enzymes required to metabolize ADHD medications or parallel nutrition strategies) are well-documented and better established.

Having said that, out of these following 10 reasons for vitamin C supplementation for treating ADHD, around 3 to 4 are well-grounded on clinical evidence, about 3 to 4 are plausible arguments, but with potentially great limiting factors, and 3 to 4 are possible, but largely hypothetical at the current time. It is the intent of the blogger not to persuade or advocate the rampant consumption of megadoses of this vitamin, but rather to illustrate the complexities of our metabolic systems as to how such a basic vitamin can be tied into so many ADHD-relevant processes.

Based on the conclusions of the various research papers which I am about to highlight in this posting, it appears that high levels of vitamin C supplementation will do little to alleviate ADHD symptoms, especially when compared to efficacy other nutrients with better track records such as omega-3's, iron, magnesium and zinc. Based on (often substantially) greater piles of evidence, stronger claims can generally be made for a correlation between deficiencies of these aforementioned nutrients and ADHD severity than for the connection between ADHD and levels of vitamin C.

Instead, this post is meant more as an advocate for the maintenance of recommended (or slightly higher) levels of vitamin C and avoiding deficiencies (which can decrease the processes optimized by this vitamin). Thus, it appears to be more accurate if we view vitamin C as an auxiliary or secondary co-treatment strategy for ADHD via natural dietary methods and not as a stand-alone ADHD treatment. This is important to remember as we work through this post and see some of vitamin C's potential (but not always decisively proven) "natural" ADHD treatment options.

We must also acknowledge that vitamin C exists in two major forms: the common (non-oxidized) form of the vitamin, also called ascorbic acid, or the oxidized form Dehydroascorbic Acid or DHA (Blogger's note: please don't confuse this vitamin-C derived "DHA" with the omega-3 fatty acid docosahexaenoic acid, which is also commonly abbreviated as DHA. They are two entirely different molecules. We have discussed the significance of this important omega-3 earlier posts).

As we will see later in this post, the two different forms of the vitamin have extremely different properties in several cases, including their methods of transport and uptake into the brain (while it may seem counterintuitive, given the fact that we often associate "oxidized" with being bad in the body, it is the oxidized DHA form of the vitamin actually has a number of advantages over the reduced form with regards to brain uptake).

Without further ado, here are 10 documented ways (as well as two "possibilities") in which this important vitamin can help with ADHD. While some of these may seem obvious, others appear to have a more obscure, but equally important role or function as an ADHD treatment method:


  1. Vitamin C offers protection against fatty acid oxidation, including the important omega-3's which are a popular treatment and supplement for ADHD. While omega-3 supplementation remains a popular treatment method among "natural" ADHD treatment advocates, its overall effectiveness remains questionable.

    The theory behind omega-3 treatments for ADHD can be found in an earlier posting, but in a nutshell, the brain and central nervous system are comprised of cells with very high omega-3 fat content, and must be constantly supplied with either these fats themselves or chemical precursors to these fats (which can then be converted into these essential nutrients). These fats play a critical role in coating the outer layers of the "messenger" signaling portions of the brain, and the development of these protective layers (called myelination) is especially pronounced in adolescence.

    High levels of overall brain development and re-wiring occurs during the adolescent stages, and in multiple cases, this process is delayed in the ADHD population. Therefore, the idea holds that we should be supplementing this process along by feeding the brain these important omega-3 rich foods and nutrients.

    However, one of the fundamental problems is the fact that fatty acids (including omega-3's in particular) are especially susceptible to damage through chemical process of oxidation. We have alluded to this in earlier discussions on omega-3 oxidation and ADHD. Numerous studies have shown that dietary antioxidant intervention can greatly alleviate this problem. In this blogger's opinion, failure to recognize this important factor of antioxidant protection for omega-3 fatty acids is one of the biggest saboteurs of omega-3 intervention as an ADHD treatment.

    As far as antioxidant protection strategies of fatty acids are concerned, vitamin C is often not the best choice. As a water-soluble vitamin, the interactions with the much less water soluble omega-3 fatty acids are potentially limited. However, vitamin C can "sacrifice" itself and help boost levels of other important antioxidants in the body that can have a greater impact on omega-3 fatty acid protection and cell membrane viability. Among these are vitamin E and glutathione (which will be addressed later on in this posting, when we talk about antioxidant recycling).

    However, we may be beginning to see that vitamin C could be an effective co-treatment to fatty acids in its own right, at least according to some recent studies. One study (which, unfortunately paid more attention to the fatty acid component and had vitamin C as more of an auxiliary co-treatment) suggested that vitamin C can boost the efficacy of flax oil (a popular omega-3 rich dietary choice) as an ADHD treatment measure. Clearly, this was just one study, and more research is warranted, but the significance of protecting these all-important dietary fats found at high concentrations in the brain and nervous system cannot be understated.

  2. Vitamin C acts as a potent neuroprotective agent (important for neurological disorders including ADHD). It may sound surprising, but nerve endings in the brain have the second highest concentration of vitamin C in the body (behind only the adrenal glands, which produce adrenaline, which we will mention later in this post when discussing vitamin C and catecholamines). Current research appears to illuminate the protective role of vitamin C, specifically in its oxidized DHA form and when used in conjunction with vitamin D3, against a specific type of oxidative damage on the brain called ischemia (reduced blood supply to a particular brain region, which can be brought on, by other things, oxidative damage).

    The relevance to ADHD here is that ischemia is a surprisingly common environmental cause of the disorder, especially during early (neonatal) development. It is believed by some researchers that oxidative damage which causes this ischemic reduction of blood supply may bring on ADHD symptoms by interfering with biological targets (or receptors) in the brain for the important neurotransmitting chemical dopamine. In other words, for those individuals suffering from reduced blood flow to these brain regions earlier in life, the important signaling chemical dopamine has trouble finding its mark in the brain, results in the attenuation of attention span and longer reaction timing (for more information on ADHD and reaction timing, please see the earlier post: Do ADHD Kids Use their brain regions differently?).

    While the basis for ischemia treatment for ADHD via vitamin C supplementation is more hypothetical at the moment, the fact that treatment with this vitamin can counteract a major environmental cause of the disorder suggests that vitamin C may be a viable treatment method for this aspect of ADHD and related disorders.

  3. Vitamin C helps "recycle" and maintain pools of other crucial antioxidants such as vitamin E, polyphenols (potent antioxidants found in fruits, vegetables, wines and teas), glutathione (which is manufactured in the body and is the body's standard antioxidant of choice), and products of the antioxidant enzyme superoxide dismutase or SOD.

    We have alluded to this message in point number 1 above. Several studies have found abnormally low antioxidant levels (and high "pro-oxidant" levels) in ADHD subjects. It appears that increasing dietary antioxidant intake may at least partially reduce this trend.

    For example, boosting intake of a form of vitamin E called gamma-tocopherol can reduce the oxidation of important fatty acids in ADHD subjects (although it is worth mentioning that gamma-tocopherol is not the most bio-available form of vitamin E, that honor goes to another form of the vitamin called alpha-tocopherol). It is worth mentioning that vitamin C and vitamin E work extremely well together as an antioxidant tandem, and help spare the pool of the body's antioxidant reserves from depletion. Therefore co-administration of these two vitamins is highly recommended.

    Collective research appears to indicate that raising the total antioxidant levels in the body can offset some of the negative symptoms of ADHD and related disorders. We've already mentioned the importance of preventing oxidation of the fatty acids (lipids) of the cell walls, including the membranes of brain cells (which are rich in the omega-3's).

    Secondary to its role in preventing fatty acid oxidation, vitamin C can counteract the oxidation of minerals (including iron and copper) which may often be used as dietary supplements for ADHD treatments. As in the case of omega-3 fatty acid supplementation, the risk of increased oxidative damage due to these mineral supplements is an often overlooked negative side effect of this common "natural" ADHD treatment strategy.

    Due, in part to its high concentration in brain tissue and susceptibility to oxidation, iron is prone to causing oxidative damage to the brain. Maintaining adequate levels of vitamin C (as well as vitamin E, polyphenols and glutathione) can offset much of this potential damage. We will see this more in point #5 below.

    Finally, an often-overlooked side effect of most medications (including ADHD stimulant medications) is the potential for these medications to cause oxidative damage. For example, the common ADHD stimulant methylphenidate (Ritalin, Concerta, Daytrana) was found to cause oxidative stress in young rat brains, and highlights the possibility that long-term administration of these agents may leave key targeted "ADHD" brain regions more susceptible to oxidative damage.

    This observation was more evident in younger rats undergoing development and brain maturation, which may translate into analogous effects in the developing brains of children. Thus, children may be susceptible to harmful oxidative damage in the brain via consistent use of common ADHD stimulant medication, increasing their need for higher levels of vitamin C and other antioxidants.

    Of course, we should not put too much stock into just one or two studies; and that this conclusion is being drawn prematurely by ramblings of an over-anxious blogger :) but we may seriously need to investigate this often overlooked possibility of ADHD medication based oxidative brain damage in children, and the possible amelioration of these dagmages via treatment with dietary antioxidants such as vitamins C and E.

  4. Vitamin C can potentially counteract the effects of lead on ADHD-like states: Numerous studies have linked in increase in ADHD symtpoms and behaviors with higher lead levels (although it is worth mentioning that numerous studies out there refute this association as well, so there is far from a consensus surrounding this issue). We have seen previously that iron may counteract lead and potentially alleviate some of these negative lead-based effects. When used in conjunction with other nutrients such as the mineral zinc and the amino acids taurine, methionine and glycine, vitamin C may reduce lead-derived learning and memory impairments (in the rat model), features which offer at least some semblance to common deficits in the disorder of ADHD.

  5. Vitamin C can boost absorption of key minerals which are often deficient in the ADHD population. One possible explanation for the ability of vitamin C to counteract the effects of lead may be the role of vitamin C in boosting iron absorption, especially in iron deficient states. Some studies strongly recommend the co-administration of these two nutrients.

    As an aside, please note that there is a healthy debate surrounding the possibility of vitamin C/iron combinations acting as potentially destructive pro-oxidants. Based on current trends in the literature, however, it appears that most of these negative effects are seen more in vitro, or in cell cultures, but not in vivo, or in the body. Interestingly, this potential double-edged sword of ascorbic acid form of vitamin C (as either a pro-oxidant or antioxidant) may be strongly tied to the concentration or levels of the vitamin, in that vitamin C is reported to act more like a pro-oxidant at lower levels and an antioxidant at higher levels. This may explain some of the discrepancy surrounding the pro vs. anti-oxidant effects of vitamin C when coupled with iron or other minerals.

    We have discussed the prominence of iron deficiencies in the ADHD population and the role of this critical nutrient for treating the disorder, such as the role of iron in the synthesis of neurotransmitters such as dopamine.

    Additionally, common disorders common to ADHD such as Restless legs Syndrome and sleep disorders may be attributed to deficiencies in iron levels. Therefore, vitamin C may serve as a secondary protection strategy against iron deficiencies and subsequent worsening of ADHD symptoms.

    I realize that it can be difficult to make sense of and keep separate the various iron/vitamin C interactions, so to summarize some of the main points of these associations:

    1) Vitamin C can aid in the body's absorption of iron.
    2) Vitamin C can interact with iron and keep the iron from being oxidized, but...
    3) This process can cause an oxidized form of vitamin C itself. This oxidized vitamin C species can potentially cause damage in its own right if unchecked (but can be recycled back to the antioxidant form of the vitamin by other antioxidants in the body).
    4) In general, lower levels of vitamin C tend to have more of a "pro-oxidant" effect, while the antioxidant effects of vitamin C often predominate at higher levels of the vitamin.

  6. Higher vitamin C levels have been tied to improvements in visuo-spatial abilities as well as non-verbal intelligence (both of which are often deficient in the ADHD population). As a reference, non-verbal intelligence includes skills such as being able to read or pick up on non-verbal social cues such as reading facial expressions and associating them with another person's mood, as well as distinguishing differences and inflections in tone of voice. It is important to note that non-verbal learning disabilities often accompany ADHD symptoms, and are often seen across the autistic spectrum (which mirrors ADHD symptoms in a number of ways).

    The correlation between vitamin C and non-verbal abilities is more strained than some of the other associations mentioned in this piece, but this blogger has found a few documented studies pointing out this possible affiliation. The whole vitamin C association with non-verbal deficits might be part of a bigger picture, in that deficits in non-verbal IQ scores seems to be correlated with low total overall antioxidant levels.

    On the flipside, the correlation between non-verbal deficits and the vitamin C antioxidant in particular appears to be more prominent in boys (compare this to a later section of this post where we will see that ADHD symptoms may be more tied to abnormalities in blood glucose levels in girls). In other words, the effects of vitamin C supplementation may have different levels of effectiveness with regards to gender and comorbid conditions (but please note that much more additional study must be done to validate this general claim).

  7. Beyond the physical anti-aging benefits commonly associated with the vitamin, vitamin C has shown to exhibit potent intellectual anti-aging benefits (making it a good candidate for adult ADHD cases). While the publication cited above is given in the context of the neurodegenerative disorder Alzheimer's Disease, we should take note that there is a significant overlap between ADHD and Alzheimer's (beyond just the attentional deficits).

    For example, genes (and the enzymes they code for) we have previously mentioned as being associated with ADHD are also believed to be affiliated with Alzheimer's. These include "ADHD" genes and enzymes such as COMT and the Serotonin Transporter gene. Given the fact that the two disorders share a significant genetic and enzyme system overlap, as well as similarities between the features of the two disorders (as well as some anecdotal evidence for higher rates of neurodegenerative disease susceptibility in the ADHD population), this blogger suggests that the two disorders may also share effective treatment strategies utilizing vitamin C.

  8. Vitamin C's important role as a cofactor in important enzymes relevant to ADHD and related disorders: This is one of the less obvious (but extremely important) ways in which vitamin C treatment could benefit the individual with ADHD. Typically when we think of "cofactors" (agents which help the enzymes and enzyme systems in the body operate at peak efficiency), we often think of B vitamins or trace minerals such as zinc, iron, or magnesium.

    However, it is important to get out of our heads the notion that vitamin C's mode of action as an ADHD treatment strategy is confined to its role as a "generic" antioxidant. Several enzymes whose function is linked to ADHD (often through the metabolism of other nutrients or pharmaceutical agents) require it as an essential cofactor to improve their function. One of these is the enzyme Dopamine Beta Hydroxylase, which will be discussed in more detail in the next point.

  9. Vitamin C is important in the conversion process of dopamine to norepinephrine: This is relevant to both drug and nutritionally based treatment methods for ADHD (dopamine and norepinephrine are key neurotransmitters in the brain and nervous system and are often unbalanced in ADHD cases. Many ADHD medications (in particular the stimulants) work by regulating the production and transport of these two chemicals by targeting key enzymes and proteins made for transporting both of these agents.

    As mentioned above, one such enzyme for this conversion is the enzyme Dopamine Beta Hydroxylase (or DBH). We have investigated the importance of the gene that codes for this enzyme, the Dopamine Beta Hydroxylase gene, and its significance with regards to ADHD in earlier posts.

    Synthesis of other catecholamines (chemicals which are manufactured in the body from the amino acid tyrosine, which were alluded to in an earlier post on the drug modafinil for adult ADHD treatment and will be discussed further at the end of this post) such dopamine, norepinephrine and adrenaline) takes place in vitamin C rich regions of the body, including the adrenal glands as well as various brain regions.

    Keep in mind that the concentrations of vitamin C required for the enzymes in these brain regions to work optimally are around 40 times higher than the typical vitamin C concentration in the blood. As a result, an effective transport system to get this higher concentration in the brain is necessary, which leads to the next function of the Blood Brain Barrier (BBB):

  10. Vitamin C has multiple well-designed ways to get into the brain through the Blood Brain Barrier and its levels are tightly regulated: The Blood Brain Barrier is an important barrier that is designed to limit or prevent potentially harmful substances in the blood from crossing over into the brain, while allowing a controlled passage of nutrients into the brain. We have alluded to this barrier in the last post with regards to its role in the passage of metals such as selenium, zinc and mercury and the subsequent effects on ADHD.

    Compounds which are water soluble, such as vitamin C, have an inherently more difficult passage through this critical barrier owing to size and solubility issues (in general, the blood brain barrier naturally favors the transport of less water soluble agents). However, there are a number of ways around this potential problem.

    In biology and medicine, the term homeostasis refers to stability or resistance to uncontrolled fluctuation. The transport systems of the blood brain barrier seem to be well-suited for vitamin C, owing in part to the fact that the optimal levels of key proteins that transport the vitamin into the brain fall work at peak efficiency around the standard concentration of vitamin C in the blood (this is not the case for all nutrient transporters).

    For example one of these proteins is called the Sodium-dependent Vitamin C Transporter-2 (or SVCT-2) allows vitamin C to be transported into the brain from the blood and maintain the much higher brain concentration of the vitamin. In fact, different transport methods exist (and, to some degree are even more favorable) if vitamin C is in the oxidized form (i.e. it has already fulfilled its role as an antioxidant by "sacrificing" itself to keep harmful oxidation from occuring to something else, such as an omega-3 fatty acid).

    It is important to note that because of these tight regulatory mechanisms which safeguard levels of vitamin C both in and out of the brain, rampant supplementation with vitamin C will not change its levels in the brain to a high degree. In other words, our bodies are typically well-adapted at holding onto this vitamin and maintaining appropriate levels of this key nutrient in the brain. This provides argument against the merits of high levels of supplementation (not to say that higher levels are necessarily harmful, just that this will be of limited effect). Nevertheless, we still should strive to avoid shortages of this vitamin.

**Two other possible advantages of boosting vitamin C intake for ADHD: Please note that these next two suggestions are more of a personal hypothesis of the blogger and less validated by adequate research. Nevertheless, they may be at least worth a mention:

  1. Vitamin C may help regulate blood glucose levels in ADHD patients: Several studies seem to indicate that glucose metabolism in the brains of ADHD children is lower in multiple regions. It appears that these effects may be even more pronounced in girls and women with ADHD (although this blogger believes that the whole brain glucose metabolism differences are a bit overhyped, a number of other studies, which are simply not mentioned in most ADHD treatment books, found little to no metabolic differences. Nevertheless, I believe there is still sufficient evidence that, while smaller than what most other "ADHD experts" assert, there is still a significant difference in these metabolic patterns).

    Additionally, these differences may become more pronounced with age, suggesting a potentially greater necessity for intervention among adult ADHD cases. Again, women in particular may be more affected, according to the current body of research. It is important to note that the evidence for vitamin C supplementation for improving brain glucose metabolic efficiency for ADHD patients is more hypothetical than experimental at the moment.

    What we do know is that there are pronounced interactions with vitamin C and glucose regulation, such as vitamin C treatment for diabetic conditions. However, we may at the wrong end of a "chicken-or-the-egg" type of dilemna, since significant evidence points towards lower vitamin C concentrations in diabetic-like conditions. This is likely due, in part, to the oxidative stress caused on the body by the diabetic state (and the subsequent consumption or depletion of vitamin C stores).

    Again, most of these studies are done on diabetic conditions in the blood outside of the nervous system, but some of these effects (at least in theory) could carry over to glucose regulation in the brain. However, this blogger readily admits that this possibility is somewhat tenuous.

  2. Vitamin C can improve circulation, including to brain regions: Again, this is more on a theoretical note. In addition to its proposed role as a blood sugar regulating measure (see above), vitamin C may also help regulate blood pressure and subsequent circulatory capabilities to key brain regions. Again, the evidence supporting this assertion is much weaker than the original 10 points listed, above, but in this blogger's personal opinion, this may be another positive side effect of vitamin C treatment for ADHD.

It is important to realize that the body of research supporting these claims for utilizing vitamin C as an ADHD treatment strategy is all over the spectrum (from merely hypothetical ponderings to consistently verified controlled research studies).

At the moment, the strongest arguments for vitamin C treatment as a remedy to ADHD symptoms seem to be in protecting cells in the brain and nervous system from oxidative damage either directly via vitamin C's antioxidant capabilities or secondarily via vitamin C's ability to help regulate or "recycle" levels of other antioxidants, such as vitamin E (which much more effective at protecting the omega-3 rich regions of the brain from fatty acid oxidation) and glutathione. In other words, vitamin C is a great way to augment the ever-popular omega-3 fatty acid supplementation strategy for ADHD (and is unfortunately often overlooked by prescribing physicians).

While these effects are perhaps the most widely known among the health field, two other factors such as vitamin C's role in ADHD management are also well-documented and potentially on par with its role as a generalized antioxidant. Vitamin C is an important co-factor (enzyme helper) in a number of metabolic processes surrounding the disorder of ADHD, and is key to both the synthesis of important neurotransmitters such as dopamine and norepinephrine (which are often off-kilter in the ADHD population).

Thus, it may be a beneficial adjunct therapy for precursor loading (taking high levels of a nutrient which the body can then convert to the desired compound) with the amino acid tyrosine (which the body converts to dopamine and eventually norepinephrine via a series of enzyme-dependent steps, some which utilize vitamin C. In theory we're giving the body more starting material to work with to increase the output of these important neuro-signaling chemicals of clinical relevance to ADHD and related disorders. Please keep in mind that the literature seems to be split at the moment about the overall effectiveness of these precursor loading methods with regards to these ADHD treatment strategies).

In conclusion, maintaining adequate levels of vitamin C (for the recommended daily amounts of vitamin C, check here) is an often overlooked treatment method for a variety of diseases and disorders beyond the common cold. While perhaps not as promising as some of the other nutritionally-based treatment strategies for ADHD which have been mentioned in the past in this blog, such as carnitine, zinc, omega-3 fatty acids, iron, or magnesium and B vitamins, this simple and relatively inexpensive treatment method may pay dividends in the long run.

Furthermore, with low risks of toxicity due to its highly water-soluble nature (overdosing on vitamin C usually results in little more than temporary bouts of diarrhea which are quickly reversible when the vitamin intake is scaled back), the payoff/risk factors are favorable for regular usage of vitamin C as an auxiliary or supplementary method of nutritionally-based ADHD treatment.